Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells.
نویسندگان
چکیده
Production of pyocyanin enhances Pseudomonas aeruginosa virulence. Many of pyocyanin's in vitro and in vivo cytotoxic effects on human cells appear to result from its ability to redox cycle. Pyocyanin directly accepts electrons from NADH or NADPH with subsequent electron transfer to oxygen, generating reactive oxygen species. Reduced glutathione (GSH) is an important cellular antioxidant, and it contributes to the regulation of redox-sensitive signaling systems. Using the human bronchial epithelial (HBE) and the A549 human type II alveolar epithelial cell lines, we tested the hypothesis that pyocyanin can deplete airway epithelial cells of GSH. Incubation of both cell types with pyocyanin led to a concentration-dependent loss of cellular GSH (up to 50%) and an increase in oxidized GSH (GSSG) in the HBE, but not A549 cells, at 24 h. An increase in total GSH, mostly as GSSG, was detected in the culture media, suggesting export of GSH or GSSG from the pyocyanin-exposed cells. Loss of GSH could be due to pyocyanin-induced H(2)O(2) formation. However, overexpression of catalase only partially prevented the pyocyanin-mediated decline in cellular GSH. Cell-free electron paramagnetic resonance studies revealed that pyocyanin directly oxidizes GSH, forming pyocyanin free radical and O(2)(-). Pyocyanin oxidized other thiol-containing compounds, cysteine and N-acetyl-cysteine, but not methionine. Thus GSH may enhance pyocyanin-induced cytotoxicity by functioning as an alternative source of reducing equivalents for pyocyanin redox cycling. Pyocyanin-mediated alterations in cellular GSH may alter epithelial cell functions by modulating redox sensitive signaling events.
منابع مشابه
The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells.
The dual oxidase-thiocyanate-lactoperoxidase (Duox/SCN(-)/LPO) system generates the microbicidal oxidant hypothiocyanite in the airway surface liquid by using LPO, thiocyanate, and Duox-derived hydrogen peroxide released from the apical surface of the airway epithelium. This system is effective against several microorganisms that infect airways of cystic fibrosis and other immunocompromised pat...
متن کاملGlutathione Enhances Antibiotic Efficiency and Effectiveness of DNase I in Disrupting Pseudomonas aeruginosa Biofilms While Also Inhibiting Pyocyanin Activity, Thus Facilitating Restoration of Cell Enzymatic Activity, Confluence and Viability
Pyocyanin secreted by Pseudomonas aeruginosa is a virulence factor that damages epithelial cells during infection through the action of reactive oxygen species, however, little is known about its direct effect on biofilms. We demonstrated that pyocyanin-producing P. aeruginosa strains (PA14WT, DKN370, AES-1R, and AES-2) formed robust biofilms in contrast to the poorly formed biofilms of the pyo...
متن کاملThe Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells.
Pyocyanin, produced by Pseudomonas aeruginosa, has many deleterious effects on human cells that relate to its ability to generate reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Human cells possess several mechanisms to protect themselves from ROS, including manganese superoxide dismutase (MnSOD), copper zinc superoxide dismutase (CuZnSOD), and catalase. Given the link ...
متن کاملPseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells.
Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a ...
متن کاملOxidation of thiols and modification of redox-sensitive signaling in human lung epithelial cells exposed to Pseudomonas pyocyanin.
The aim of this study was to examine the effects of pyocyanin exposure on mitochondrial GSH, other cellular thiols (thioredoxin-1, Trx-1), and oxidant-sensitive signaling pathways hypoxia inducible factor (HIF-1α) and heme oxygenase (HO-1) in A549 and HBE cell lines. A549 human type II alveolar epithelial cells and human bronchial epithelial (HBE) cells were treated with varying concentrations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 287 1 شماره
صفحات -
تاریخ انتشار 2004